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ABSTRACT 
Living cells grow and communicate with each other by 

exchanging ions with their environment fluid through complex 
physiological processes that occur in sequence and/or parallel 
and involve multitude of temporal and spatial scales. The 
events involved can be very fast and highly localized requiring 
spatial resolution in the order of tens of nanometers. An atomic 
force microscope (AFM) and AFM-based multifunctional 
scanning probes belong to a new class of instruments that 
provide a unique opportunity to study cell communication 
processes in-situ with sufficient spatial and temporal resolution. 
However, one of the main challenges in AFM experiments lies 
in data interpretation. Therefore, development of fundamentally 
sound, yet computationally efficient theoretical models to 
resolve the multiple interacting transport phenomena under-
lying the AFM imaging process is necessary, and such models 
must be general and flexible enough to simulate the complex 
interactions, geometry, and operating conditions of the 
instrument and biological membrane under actual physiological 
conditions. We report the electrohydrodynamic force at the 
surface of the AFM tip and elastic deformation of the soft 
biological membranes induced by the AFM probing action, 
which are essential for quantitative interpretation the AFM 
images in the aqueous environment. This study is the first 
theoretical demonstration, that in addition to the electrical force 
induced by the non-uniform electric field around the AFM tip, 
the feedback force at the AFM tip during imaging in an 
aqueous environment is also due to the strong coupling of 
electrohydrodynamic interactions in the solution and elastic 
deformation of the membrane. 
INTRODUCTION 

Atomic Force Microscopy (AFM) provides unique 
opportunities to investigate the structure, morphology, 
micromechanical properties, and biochemical signaling activity 
of cells, subcell structures, and even single molecules with high 

temporal and spatial resolutions [1]. In biological applications, 
AFM imaging needs to be performed in the natural (aqueous) 
living environment of the cell in order to observe molecular 
level interactions and biochemical processes in-situ in the 
electrolyte solution and to avoid the interference due to the 
capillary adhesion forces. Despite significant advances made in 
experimental application of AFM in cell imaging, the data 
interpretation and associated theoretical models are still in their 
infancy. This is perhaps owing to the overwhelming complexity 
of the physical/chemical phenomena taking place during an 
AFM imaging of flexible, electrochemically active biological 
samples, which includes intimately coupled fluid flow (inside 
and outside of the cell), dynamics of the cell membrane 
deformation, and electrodynamics of ionic interactions in the 
electrolyte and surface double layers. The critical importance of 
understanding these interactions should not be overlooked, as 
pointed out by Kamm in his recent review of cellular fluid 
mechanics [2], because of the critical role of the flow 
conditions on the biological functions, normal physiology and 
disease of living cells. In our previous work [3], the physical 
processes taking place during AFM imaging of soft biological 
membranes were investigated in detail. A particular emphasis 
was placed on the understanding of hydrodynamic effects in the 
fluid inside and outside of the cell associated with elastic 
deformation of the membrane in response to the AFM tapping 
action for the entire probing cycle. In this paper, we extend our 
prior work by including the electrodynamic effects on the fluid 
motion and surface forces to obtain an integrated 
electrohydrodynamic model describing the AFM tip and 
biomembrane interactions. The model couples the fluid flow 
(inside and outside of the cell membrane), equilibrium ion 
distribution, electrical forces, membrane surface charge, and 
dynamics of membrane deformation.  
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Figure 1: Schematic view of an AFM tip approaching a cell 
membrane and definition of the computational domain. 

THEORETICAL DEVELOPMENTS 

Scaling and Model Formulation

Figure 1 shows the schematic of the physical arrangement 
used for model development. The electrolyte is considered to 
be homogeneous with uniform electrical and fluid properties on 
both sides of the cell membrane, whose surface potential or 
charge density are uniform and described by a symmetric zeta 
potential. We also assume that the short-range van-der-Waals, 
hydration, and other molecular level interactions are negligible 
compared to the electrodynamic forces when the AFM tip 
penetrates into the electric double-layer of the membrane. Both 
the environment fluid and the fluid inside the cell are assumed 
incompressible Newtonian fluids with the same density and 
viscosity. The membrane thickness is neglected and 
mathematically treated as an infinitesimally thin interface. 
Thermal fluctuations are assumed to be negligible so that the 
membrane surface is perfectly smooth. We do not consider the 
ion transport across the cell membrane and the Lorentz electric 
force is the only body force involved in the probing process. 
The system dynamics is modeled by the electrically forced non-
homogeneous Stokes equation for fluid flow, the linearized 
Poisson-Boltzmann equation for the electric potential 
distribution in the electrolyte environment, the Laplace 
equation for the electric potential within the dielectric AFM tip, 
and the Helfrich and Zhon-can's equation is used to describe the 
equilibrium shape of the bio-membrane. To make the 
results general, we render the governing equations 
dimensionless by using the following scales:  length scale is 

given by the AFM tip radius R , velocity u  is scaled by the tip 

approach velocity 0V , time is scaled by 0/VR , the local 

surface tension γ  is scaled by µ0V  with µ  being dynamic 

viscosity, the membrane bending rigidity B  is scaled by 
2

0 RV µ , the membrane mean curvature H  and spontaneous 

curvature 0c  are both scaled by R/1 , the Gaussian curvature 

K  is scaled by 2/1 R , surface force f  and pressure p  are 

scaled by RV /0µ , the electric potential φ  is scaled by 

( )ekT /=ζζ  where k  is Boltzmann constant, T  is an 

absolute temperature, and e  is the single electron charge. 

Using these scales, the dimensionless governing equations for 
the electric field potential and electrohydrodynamic stress are:  
(i) Linearized Poisson-Boltzmann and Laplace equations [4]:  

( ) φκφ 22 R=∇ , 21 �� +∈x    (1) 

02 =∇ φ , t�∈x     (2) 

(ii) Quasi-steady, electrically forced Stokes equation and the 
continuity equation with combined hydrodynamic and Maxwell 
electric stresses [5]: 

( ) 02 =∇+∇+∇−=+⋅∇ φαφu�� peh , 21 �� +∈x  (3) 

0=⋅∇ u , 21 �� +∈x    (4) 

where x  denotes a position vector in the Cartesian coordinate 
system, and the volumetric charge density has been linearized 
about the equilibrium ion distribution. The Maxwell stress 
tensor and the electric field can be written in dimensionless 
form as 
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with the term in front of the Kronecker delta ij�  denoting the 

isotropic stress component.  
(iii) Dynamic boundary condition at the membrane interface is 
given by the Landau's general dynamic interface model [6] 
combined with Helfrich membrane mechanics and Zhong-can's 
equilibrium shape equation [7,8], in terms of normal and shear 
components of the total (hydrodynamic and electric) stress 
tensor as described in detail in [3], 
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(iv) Finally, the formulation is completed by introducing the 

local area constraint condition ( ) 0=∂∂ t/dA  [3] in order to 

find an unknown tension/compression force γ  due to the 

surface force jump given by Eqs. (6) and (7).  
    Dimensionless parameters in Eqs. (1, 3, 5) are the electric 
force and electric stress parameters α  and ω , respectively, 

both scaled by the viscous force RV /0µ , and the characteristic 

diffusion length Rκ  of the electric double layer based on the 

Debye length 1−κ :
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where ε  is the relative electric permittivity, 0ε  is the 

permittivity of the vacuum, and the summation term inside the 
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expression for Debye length κ  represents the ionic strength of 

the electrolyte solution with iz  and ∞
in  being, respectively, the 

valence number and the bulk concentration for each ionic 

species i . The system of governing equations (1-7) is 

complemented by the boundary conditions: 

x)( exu ˆ1= , t�∂∈x ; )()( m xuxu = , m�∂∈x ; 0=)(xu , ∞→x ;

m)()( φφφ == xx 21 , m�∂∈x  toward 21 �and� ;

0=)(xφ , ∞→x ;
1 t
( ) ( )φ φ=x x , t�∂∈x ;

           )()()()(tr xnxxnx ⋅∇=⋅∇ 1φφε , t�∂∈x                    (9) 

where the relative dielectric constant is defined by 1/εεε tr = .

Several assumptions are made in the boundary conditions to 
simplify problem: (i) the AFM tip approach speed remains 
constant during imaging process, (ii) the membrane electric 

potential is small, ζφ << , so that the Poisson-Boltzmann 

equation can be linearized, (iii) the polar groups of the lipid 
molecules keep the electric potential unifom across the 
membrane, (iv) the AFM tip has zero surface charge density.   
Boundary Integral Formulation

The model equations are intimately coupled and solved by the 
boundary integral method. According to Ladyzhenskaya [9], 
the integral form of the dimensionless, nonhomogeneous 
Stokes equation combines the contributions from Stokeslet, 
Stresslet, and nonhomogeneous source terms and is given by:   
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where 0=λ  for Ω∉0x , πλ 8=  for Ω∂−Ω∈0x , and πλ 4=
for Ω∂∈0x . Also, the unit surface normal vector jn  points 

into the fluid domain, iS  represents the vector source term due 

to Lorentz electric force in Eq. (3), iu  and ikτ  represent the 

velocity and electrohydrodynamic stress fields. Note that when 

the source point is located at the boundary, Ω∂∈0x , the 

double layer Stresslet contribution has to be interpreted in the 
sense of Cauchy principal value because of the stronger 

singularity in the integral kernel ijkT . The fundamental solution 

(Stokeslet) and its corresponding stress field (Stresslet) are 
given by [10],  
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respectively, where ijδ  is the Kronecker delta function, 

0xxr -=  is the position vector between the field and source 

points, and 0xx-r =  is the distance between them. Further, the 

domain integral of the source term φαφ∇−=iS   can be 

transformed into the surface integral by incorporating the 

divergence free property of the Stokeslet, 0=⋅∇ ijG , i.e, 
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Thus, the boundary integral formulation of Eq. (3) becomes  
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Eq. (13) is valid for the fluids on both sides of the 
biomembrane, and the domains can be effectively combined 
leading to the following unified domain formulation [3]:  
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where πλ 8=  for mΩ∂+Ω+Ω∈ 210x , and πλ 4=  for  

tΩ∂∈0x . Note that the traction term is replaced by the surface 

force kiki nf τ=  for convenience, and the surface force jump 

condition 
)1()2(

iii fff −=∆  in the kernel function can be 

interpreted as the source density acting on the fluid from the 
cell membrane surface. Clearly, the solution of linearized 
Poisson-Boltzmann and Laplace equations, Eqs. (1) and (2), 
can also be expressed in terms of integral equations:   
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respectively, where 5.01=λ  for mt Ω∂+Ω∂∈0x , 0.11=λ  for 

10 Ω∈x , 5.0=tλ  for tΩ∂∈0x , and 0.1=tλ  for tΩ∈0x . Note 

that the coefficient value 0.5 is for the smooth boundary. And 
the fundamental solutions are given by  

( ) reG rR
PB πκ 4/−= , rGL π4/1=   (17) 

As shown in Fig. (1), the AFM tip and cell membrane are 
axisymmetric, so the complexity of the integral formulations 
can be further reduced by using the cylindrical coordinate 
system and expressing the fundamental solutions in terms of the 
Green's functions of the ring source type. Finally, the 
membrane constraint equation can be expressed in terms of the 

arc-length with the local surface tangent )ˆ
m( Ω∂∈xt  [3]:
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In the final form, the complex three-dimensional system of 
integral equations for the coupled electric field/fluid flow/ 
membrane deformation problem, described by Eqs. (14-16, 18) 
and boundary conditions Eqs. (6,7,9), is reduced to one-
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dimensional form using axisymmetric integral representation 
and is solved numerically using the boundary element method 
with discretization along the surface of the AFM tip and the cell 
membrane [3]. Due to the limited space, the details of all 
transformations are not shown, but reported elsewhere [3,11]. 

RESULTS AND DISCUSSION 
Hydrodynamic Interactions 

We consider three basic interaction processes in respect to 
direction of the tip movement to characterize the fundamental 
modes of tip-membrane interactions: first, the AFM tip is 
approaching an initially horizontal membrane with a constant 
velocity in positive x  direction (forward); second, the tip 

returns to its initial position moving in negative x  direction 

(reverse); and third, the tip stops at its upper state and the 
membrane is allowed to freely relax and slowly return to its 
undeformed horizontal shape (relaxation). It should be noted 
that the driving mechanisms of the membrane deformation are 
different than those responsible for the free liquid-liquid 
interface evolution because of the additional effects arising 
from the surface bending energy and the local tension or 
compression force induced by the constant area constraint 
reflecting the assumption of local membrane incompressibility. 
The results of presented simulations are based on the geometry 
of the computational domain defined by the following 

dimensionless quantities: the AFM tip has total height 10 R
(where R  is the tip radius), the tip opening angle is π/3, and 

the initial tip-sample separation is 10 R . The dimensionless 
time step is set to 0.1 and is increased to 1.0 in the final stage of 
the slow membrane relaxation. A test case with the spontaneous 

membrane curvature =0c -2.0 is investigated and the 

dimensionless bending rigidity =B 0.1, 1.0, 5.0, and 20.0 are 
used for the simulation of the force-distance curves. 

Fig. 2. A full cycle evolution of the fluid membrane with 

bending rigidity =B 1.0 and spontaneous curvature 0c = -2.0 

induced by the AFM tip with an opening angle =α 60º.

Figure 2 shows the membrane evolution during forward, 
reverse, and relaxation modes of AFM imaging. As a result of 
viscous flow induced by an AFM motion in fluid outside the 
cell, the membrane is pushed forward (bends down) by the 
hydrodynamic piston force, and the fluid within the cell is in 
turn moved by the membrane with the highest local velocity 
around the center location. This coupled behavior of two fluids 
above and below the membrane is consistent with the 
continuous velocity distribution and the viscous stress jump 
condition across the infinitesimally thin cell membrane. The 
curvature-dependent bending energy continuously changes with 
the membrane bending, thereby providing a local resistance to 
any deformation away from the planar, equilibrium state of the 
membrane with the minimum energy. This resistance causes 
different transient evolution behavior during forward and 
reverse modes of AFM operation. In the forward (push) motion 
mode, an increase in the bending energy induces upward 
motion of the fluid above the membrane (negative local 
migration velocities of the fluid 1) against the hydrodynamic 
(forward directed) forces. On the other hand, in the reverse
(pull) mode of operation, a decrease in the bending energy 
assists initially the membrane to withdraw from its highly 
deformed bend-down state. However, once the membrane 
returns to and passes its equilibrium position going upward, the 
bending energy again starts increasing and begins to resist any 
further deformation of the membrane until the membrane 
reaches its maximum negative deformation when the AFM tip 
stops in its upper position. In the final relaxation stage, the 
migration of the membrane is slow and solely depends on its 
bending energy and the fluid viscosity. The flow field evolution 
shows that the viscous hydrodynamic forces affect the 
membrane state even in the far field along the radial direction, 
which is a typical dragging behavior of the Stokes flow. If the 
simulations are continued for sufficiently long time, the 
membrane eventually returns to its original equilibrium planar 
shape and the fluid velocity, the hydrodynamics forces, and the 
membrane surface forces vanish everywhere.  

Tension,0

nCompressio,0

nCompressio,0

Fig. 3. Isotropic local tension/compression force of deforming 

membrane with bending rigidity =B 1.0 and spontaneous 

curvature 0c = -2.0 probed by the AFM tip with an opening 

angle =α 60º.
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Figure 3 depicts the local isotropic tension ( 0>γ ) or 

compression ( 0<γ ) forces in the membrane with respect to 

the radial position during forward, reverse, and relaxation 
modes of operation. When the AFM tip is moving forward, the 
membrane is pushed down by the fluid flow and the tension 
force is induced to drag the membrane into the center area to 
satisfy the surface area constraint imposed by the membrane 
incompressibility. In the reverse motion, compression is 
observed as the membrane is pulled back and forced to adopt a 
new shape with smaller area. Even when the membrane recedes 
over its neutral equilibrium position in the reverse motion (Fig. 
2), the surface force is still in the compression mode because 
the strong hydrodynamic forces overcome the force induced by 
the slow membrane self-relaxation, thereby maintaining the 
compression state of the membrane on a shorter time scale.  
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for the membrane with spontaneous curvature 0c = -2.0 and the 

AFM tip opening angle =α 60º.

Figure 4 shows the instantaneous maximum deformation of the 
membrane (at the center) as a function of the instantaneous tip-
membrane separation distance in a full cycle simulation. 
Clearly, this plot is analogous to the typical sampling force-
distance curves obtained experimentally during actual AFM 
imaging of biological cells. The larger bending rigidity 
translates into stronger membrane resistance to deformation as 
demonstrated by the smaller variation range for the trace curve 
along the y-axis. At the same time, when bending rigidity is 
sufficiently large, the membrane can move faster than an AFM 
tip initially during the reverse operation mode, which is caused 
by the strong bending force acting on the membrane. This fact 
is manifested on Fig. 4 by a decrease of the tip-membrane 
separation distance below 1.0 at the time moment just past 12.6, 

for the case of =B 5.0. The lagging response is also observed 
when the minimum tip-membrane separation distance (equal to 

1.0) is maintained at time t =18.6, 15.9, and 12.6 for the cases 

with bending rigidity =B 0.1, 1.0, and 5.0, respectively. In the 
AFM imaging experiments, such an irreversible “hysteresis” 
behavior in respect to the forward and reverse motion of an 

AFM tip is frequently observed for soft samples, and our 
simulations provide the first theoretical evidence that this 
behavior is due to coupling of hydrodynamic and elastic 
membrane effects. 
AFM Feedback Force    

The total force acting on the AFM tip is due to: (i) the 
electrohydrodynamic stress owing to the electrically (Lorentz 
force) driven fluid motion, and (ii) the Maxwell stress 
generated by the electric field in the vicinity of the AFM tip 
induced by the charged biomembrane. The first part is obtained 

by direct integration of the integral solution if  of Eq. (14) 

along the surface boundary of the AFM tip, 
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and the second part, contributed by Maxwell stress, is obtained 

by surface integration of the solution  1φ  of Eq. (15), 
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The Maxwell stress contribution to the force acting at the AFM 
tip, given by Eq. (20), has been studied before, see for example 
[12]. Here we only demonstrate the electrohydrodynamic 
effects by considering three basic interaction processes in 
respect to direction of the tip movement to characterize the 
fundamental modes of tip-membrane interactions: first, the 
AFM tip approaches an initially horizontal membrane with a 

constant velocity in positive x  direction (forward); second, the 

tip returns to its initial position moving in negative x  direction 

(reverse); and third, the tip stops at its upper state and the 
membrane is allowed to freely relax and slowly return to its un-
deformed horizontal state (relaxation). Three typical cases A to 
C with increasing ionic strength of the electrolyte solution are 
examined and compared to the purely hydrodynamic case D. 
The results are shown in terms of the AFM force-distance curve 
for the tip with 60º opening angle, constant tip approach speed, 

the membrane bending rigidity 0.1=B , and the relative 

dielectric constant 075.0=rε . AFM tip velocity, electrolyte 

viscosity and electrical permittivity are given by the following 

set  )80,//105.1,/10( 1
35

0 =×== −− εµ smkgsmV . The test 

conditions are listed in Table 1. 

Table 1: Simulation conditions 

A              B                       C                        D 

nmR 05=     nm15    nm5                nm50

nm961 =−κ nm4.30 nm6.9                  ∞

Mnc
510−∞ = M410− M310−                  0  

52.0=Rκ  493.0   52.0     0  

160=α  479   1601     0  

590=ω  1968   5903     0  

25.0±=mφ  5.0±   5.0±     0  

where ∞
cn  is a representative ionic strength with 1:1 electrolyte 

concentration. 
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Figure 5 compares the force vs. tip-to-membrane separation 
curves for the purely hydrodynamic system [3] and when 
Lorentz force contribution is taken into account. The results 
show that the homogeneous Stokes system (i.e., case D with no 
Lorentz force) can be a good approximation for the system A 
owing to its low ionic strength. At higher ionic strength (system 
B) the Lorentz force contribution increases as the AFM tip 
approaches the electric double layer of the membrane, and it 
becomes significant when the AFM tip is penetrating into the 
double layer (i.e., smaller tip-to-membrane distances). For the 
system C the strong ionic effect exists for an entire probing 
cycle (i.e., in the near and far fields) because of the very large 
ionic strength of the electrolyte solution. In the cases B and C, 
even in the reverse motion of the AFM tip, the repulsive 
electric force overcomes an attractive hydrodynamic force and 
dominates the system dynamics. Also, as the ionic strength 
increases, the strong screening effect confines the electric 
double layer into a small region near the membrane and the 
system can be practically separated into two distinctly different 
domains. Outside of the double layer, the AFM tip is controlled 
by the purely hydrodynamic attractive forces well described by 
the homogeneous Stokes system; whereas when the AFM tip 
penetrates into the thin double layer, the feedback force is 
dominated by the strongly repulsive osmotic pressure forces
and the viscous fluid forces can be neglected. Analysis of 
governing equations and numerical tests show that the feedback 
force acting at the AFM tip is mainly controlled by (i) the two 

correlated dimensionless parameters, α  and Rκ , (ii) the 

separation distance between an AFM tip and membrane relative 
to the double layer thickness, and (iii) the membrane surface 
charge and the material dielectric constants. When Maxwell 
stress is accounted for, one more dimensionless parameter ω
needs to be considered to assess contribution of the Maxwell 
stress relative for Lorentz and hydrodynamic viscous forces.  

CONCLUSIONS  

We have investigated fluid mechanics of the AFM imaging of 
biological membranes in physiological environment to describe 
the mechanisms of the elastic deformation of the soft sample 
induced by the AFM tip probing action from the fluid 
mechanics prospective. In the full probing cycle, a number of 
interesting and sometimes counterintuitive phenomena was 
observed such as: (a) dominance of the compression force in 
the membrane in the reverse (pull-back) mode of operation 
even after the membrane passes its equilibrium state; (b) a local 
instantaneous decrease in separation between the AFM tip and 
the membrane in the beginning of the reverse mode operation 
when bending rigidity of the membrane is sufficiently large; 
and (c) the “lagging” behavior (i.e., when the AFM tip-to-
membrane separation distance does not change with a  decrease 
in the membrane deformation in the reverse mode of operation) 
lasts longer in the case of softer membrane with smaller 
bending rigidity. Relative contributions of the electric Lorentz 
and hydrodynamic viscous forces to the feedback force acting 
on the dielectric AFM tip during tapping mode imaging of 
biomembrane in the electrolyte solution have been quantified. 
Finally, perhaps the most profound result of this study is that 
the "hysteresis" observed in the probing experiments using 
AFM for imaging soft biological samples is due to strong 
coupling of hydrodynamic effects (fluid motion) and elastic 
deformation of the membrane. The proposed theoretical 
methodology provides new insight and quantitative information 
that cannot be directly measured during the AFM experiment, 
but essential for interpretation of the imaging data. 
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